University College London Department of Computer Science

Cryptanalysis Lab 06

J. P. Bootle, N.

Courtois

1. Roots Of Unity

Type the following commands for the bitcoin Elliptic Curve:
$\mathrm{p}=115792089237316195423570985008687907853269984665640564039$ 457584007908834671663
Zp=Integers (p) \# Here we give ourselves shorthand for the mod $\mathrm{Zp}(2)^{\wedge}(\mathrm{p}-1)$
root_list = Zp.zeta(5,all=True); root_list
Try the same with $q=$
115792089237316195423570985008687907852837564279074904382 605163141518161494337

2. Isogenies: Morphisms of Elliptic Curves

Isogeny is a group homomorphism [not every book has the same definition]. It preserves the EC point addition. It also is a rational map (a division of 2 polynomials).

Type the following commands.
$\mathrm{k}=\mathrm{GF}(11)$
E = EllipticCurve(k,[1,1])
E.cardinality()
E.discriminant()
E.j_invariant()

Q = $\mathrm{E}(6,5)$
phi = E.isogeny (Q)
F=phi.codomain()
F.is_isogenous(E)
F.cardinality()
F.discriminant()
F.j_invariant()
phi

```
P = E (4,5)
phi(P); phi(P).order()
phi(E(6,5)) - why we expect this result? [V\'{e}lu]
(X, Y) = phi.rational_maps()
X
phi.x_rational_map()
```

Write SAGE code to verify if phi preserves the addition on ECC.

3. Dual Isogenies and Special Multiples

There is essentially a ONE signle isogeny between tow elliptic curves. There is an interesting notion of dual isogenies, see this easy intro paper (which contains many typos like E^{\prime} is in fact E_{2} etc) https:// wstein.org/edu/2010/581b/projects/joanna_gaski/isogenies.pdf
E = EllipticCurve(GF(37), [0,0,0,1,8])
E.short_weierstrass_model()
R. $\langle x\rangle=$ GF (37) []
$\mathrm{f}=\mathrm{x}^{\wedge} 3+\mathrm{x}^{\wedge} 2+28 * x+33$
phi = EllipticCurveIsogeny(E, f)
phi_hat = phi.dual()
phi.dual().dual() == phi
phi_hat.codomain() == phi.domain()
phi_hat.domain() == phi.codomain()
(X, Y) = phi.rational_maps()
(Xhat, Yhat) = phi_hat.rational_maps()
Xm = Xhat.subs ($\mathrm{x}=\mathrm{X}, \mathrm{y}=\mathrm{Y}$)

Section 3: Dual Isogenies and Special Multiples
$Y m=$ Yhat.subs ($x=X, y=Y$)
(Xm, Ym) == E.multiplication_by_m(7)

